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In this paper, we propose a new method to detect differences at the group level in brain images based on
spatially regularized support vector machines (SVM). We propose to spatially regularize the SVM using a
graph Laplacian. This provides a flexible approach to model different types of proximity between voxels.
We propose a proximity graph which accounts for tissue types. An efficient computation of the Gram
matrix is provided. Then, significant differences between two populations are detected using statistical
tests on the outputs of the SVM. The method was first tested on synthetic examples. It was then applied
to 72 stroke patients to detect brain areas associated with motor outcome at 90 days, based on diffusion-
weighted images acquired at the acute stage (median delay one day). The proposed method showed that
poor motor outcome is associated to changes in the corticospinal bundle and white matter tracts origi-
nating from the premotor cortex. Standard mass univariate analyses failed to detect any difference on
the same population.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion-weighted imaging (DWI) is of considerable interest to
the clinical evaluation of acute stroke patients (Chalela et al.,
2007). The location of the lesions has been suggested to represent
a better predictor than their global volume (Crafton et al., 2003). At
the subacute or chronic phases, previous studies have shown that
damages to the corticospinal tract (CST) (Domi et al., 2009) and le-
sions to the primary sensorimotor cortex (Crafton et al., 2003; Lo
et al., 2010) correlated with poor motor outcome. At the acute
stage, regional changes in the apparent diffusion coefficients
(ADC) were suggested as early quantitative indices of regional irre-
versible ischemic damage (Rosso et al., 2009). However, at the
acute stage, the spatial pattern of ADC changes associated with
motor outcome remains unclear.
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Group analyses of differences between populations in brain
imaging have widely relied on univariate voxel-wise analyses, such
as voxel-based morphometry (VBM) for structural MRI (Ashburner
and Friston, 2000) or their equivalent for diffusion imaging (VB-
DWI). In such analyses, brain images are first spatially registered
to a common stereotaxic space, and then mass univariate statistical
tests are performed in each voxel to detect significant group differ-
ences. However, the sensitivity of theses approaches is limited
when the differences are spatially complex and involve a combina-
tion of different voxels or brain structures (Davatzikos, 2004). Re-
cently, there has been a growing interest in support vector
machines (SVM) methods (Vapnik, 1995; Schölkopf and Smola,
2001) to overcome the limits of these univariate analyses. Theses
approaches allow capturing complex multivariate relationships in
the data and have been successfully applied to the individual clas-
sification of a variety of neurological conditions (Lao et al., 2004;
Fan et al., 2007; Klöppel et al., 2008a; Vemuri et al., 2008). More-
over, the output of the SVM can also be analyzed to localize spatial
patterns of discrimination, for example by drawing the coefficients
of the optimal margin hyperplane (OMH) – which, in the case of a
linear SVM, live in the same space as the MRI data (Klöppel et al.,
2008a; Vemuri et al., 2008; Mourão-Miranda et al., 2005). How-
ever, one of the problems with analyzing directly the OMH
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coefficients is that the corresponding maps are noisy and lack spa-
tial coherence. Moreover few of these approaches perform a statis-
tical analysis of the OMH coefficients (Mourão-Miranda et al.,
2005).

In this paper, we propose a new method to detect group differ-
ences in brain images based on spatially regularized SVM. In par-
ticular, we show how spatial consistency can be directly enforced
into the SVM by using Laplacian regularization. Such regularization
leads to a diffusion kernel on a graph (Kondor and Lafferty, 2002).
We then propose a statistical analysis based on the spatially regu-
larized SVM to detect brain regions which are significantly differ-
ent between two groups of subjects. The proposed framework is
tested on 2D synthetic test images and then applied to the detec-
tion of differences between stroke patients with good and poor
outcome based on DWI acquired at the acute stage.

This paper extends work previously presented at a conference
(Cuingnet et al., 2010). It is organized as follows. In Section 2, we
show that the regularization operator framework provides a flexi-
ble approach to model different types of proximity via the defini-
tion of a regularization graph. Section 3 presents a method to to
detect group differences based on the spatially regularized SVM.
Then, in Section 4, the proposed framework is tested on 2D syn-
thetic images (Section 4.1) and then applied to the detection of dif-
ferences between stroke patients with good and poor outcome
based on DWI acquired at the acute stage (Section 4.2). A discus-
sion of the methods and results is presented in Section 5.
2. Spatially regularized SVM using the graph Laplacian

In this section, we first present some background on SVM, and
on the framework of regularization operators (Section 2.1). We
then propose a regularization operator based on the graph Lapla-
cian (Section 2.2). This provides a flexible approach to model dif-
ferent types of proximity between voxels. A proximity graph
which accounts for tissue types is finally presented.

2.1. Regularization and priors in SVM

2.1.1. Linear SVM
In this contribution, we consider any feature computed at each

voxel of a 3D brain image. These images can be any characteristics
extracted from MRI, such as gray matter concentration maps (in
VBM) or ADC maps (in diffusion MRI). We further assume that
images were spatially normalized to a common stereotaxic space
(e.g. Shen and Davatzikos, 2002; Ashburner, 2007) as in many
group studies or classification methods (Lao et al., 2004; Fan
Fig. 1. Illustration of an optimal margin hyperplane obtained with a linear SVM.
The optimal separating hyperplane is defined by the ordered pair (wopt,bopt), the
minimal point solution to optimization problem (1). It is the hyperplane for which
the margin m between the two groups (gray and blue) is maximal. The support
vectors are circled. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
et al., 2007; Klöppel et al., 2008a; Vemuri et al., 2008; Querbes
et al., 2009; Cuingnet et al., 2011). Let X ¼ Rd. Let ðxsÞs2½1;N� 2 XN

be the images of N subjects and (ys)s2[1, N] 2 {�1,1}N their group
labels (e.g. diagnosis or outcome).

Support vector machines search for the hyperplane for which
the margin between groups is maximal, the OMH. The standard
linear SVM solves the following optimization problem (Vapnik,
1995; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini,
2004):

ðwopt;boptÞ¼argminw2X ;b2R

� 1
N

XN

s¼1
‘hingeðys½hw;xsiþb�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Empirical Loss

þ kkwk2|fflfflffl{zfflfflffl}
Classical Tikhonov Regularization

ð1Þ

where k 2 Rþ is the regularization parameter and ‘hinge the hinge loss
function defined as: ‘hinge : u 2 R# maxð0;1� uÞ. The ordered pair
ðwopt; boptÞ 2 X � R denotes the minimal point solution to optimiza-
tion problem (1) (Fig. 1).

With a linear SVM, the feature space is the same as the input
space. Thus, when the input features are some characteristics
defined at the voxel level (e.g. voxel intensities), each component
of wopt also corresponds to a voxel. One can therefore represent
the values of wopt in the image space, and use this map to localize
differences. However, the map wopt can be noisy and scattered (as
for example in Klöppel et al. (2008a)). This is due to the fact that
the regularization term of the standard linear SVM is not a spatial
regularization. Moreover, voxel-based comparisons are subject to
registration errors and interindividual variability. Gaussian
smoothing is therefore often used as a preprocessing step. How-
ever, some image information is lost during the smoothing step
which, for example, mixes white matter with gray matter voxels.
Tissue probability maps could be used to overcome this limitation.
More generally, if voxels are connected, meaning for example spa-
tially, anatomically or functionally close, we would like the SVM to
consider them as similar.
2.1.2. How to include priors in SVM
To spatially regularize SVM, one has to include some prior

knowledge on the proximity of features. In the literature, three
main ways have been considered in order to include priors in SVM.

In SVM, all the information used for the classification is encoded
in the kernel. Hence, the first way to include prior knowledge is to
directly design the kernel function (Schölkopf and Smola, 2001).
But this implies knowing a metric or an affinity measure on the
input space X consistent with the prior knowledge. The use of an
inappropriate metric or affinity measure would only map the data
into a higher dimensional space without adding any information.

Another way is to constrain the classifier function to be locally
invariant to some transformations. This can be done: (i) by directly
engineering a kernel which leads to locally invariant SVM
(Schölkopf et al., 1998) to some chosen transformations, (ii) by
generating artificially transformed examples from the training set
to create virtual support vectors (Schölkopf et al., 1996), (iii) by
using a combination of both these approaches called kernel jitter-
ing (Decoste and Schölkopf, 2002). But the main difficulty with
these methods is to define the transformations to which we would
like the kernel to be invariant.

The last way is to consider SVM from the regularization view-
point (Smola and Schölkopf, 1998; Schölkopf and Smola, 2001).
The idea is to constrain the classifier function to be regular with
respect to some criteria. This is the viewpoint which is adopted
in this paper.



Fig. 2. Regularization graphs and corresponding impulse responses. Upper row:
when the regularization graph is the image connectivity, the regularization is
equivalent to smoothing the images with a Gaussian smoothing kernel. Lower row:
the proposed regularization graph takes into consideration the tissue types (in this
example we only used WM and non-WM as tissue types).
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2.1.3. Regularization operators
Our aim is to introduce a spatial regularization of the classifier

function of the SVM. This function can be written as: sign (f(xs) + b),
where f 2 RX . This is done through the definition of a regularization
operator on f. Following (Smola and Schölkopf, 1998; Schölkopf and
Smola, 2001), a regularization operator P is defined as a linear map
from a space F � RX into a dot product space D; h�; �iDð Þ.

If there exists a function G : X � X ! R verifying:

8f 2 F ;8x 2 X ; f ðxÞ ¼ hPðGðx; �ÞÞ; Pðf ÞiD ð2Þ

then G is a positive semi-definite kernel and the minimization
problem:

ðf opt; boptÞ ¼ arg min
f2F ;b2R

1
N

XN

s¼1

‘hingeðys½f ðxsÞ þ b�Þ þ kkPðf Þk2
D ð3Þ

is equivalent to the SVM minimization problem with kernel G.
Since, in linear SVM, the feature space is the input space, f lies in

the input space. Therefore, the optimization problem (3) is very
convenient to include spatial regularization on f via the definition
of P.

Note that, usually, F is a Reproducing Kernel Hilbert Space
(RKHS) with kernel K and D ¼ F . Hence, if P is bounded, and P�P
is invertible (e.g. when P is injective and compact) where P�

denotes the adjoint of P, the function G defined as:

8xs 2 X ; Gxs ¼ ðP
yPÞ�1Kxs 2 RX

where Gxs ¼ Gðxs; �Þ 2 RX ;Kxs ¼ Kðxs; �Þ 2 RX , verifies Eq. (2). Note
that G can be considered as the Green function of P�P.

One has to define the regularization operator P so as to obtain
the suitable regularization for the problem.

2.2. Regularization based on diffusion on graph

2.2.1. Choice of the regularization operator
Weighted graphs are a natural framework to take spatial infor-

mation into consideration (Peleg, 1980; Geman and Geman, 1984;
Haris et al., 1998; Shi and Malik, 2000). Voxels of a brain image can
be considered as nodes of a graph which models the voxels’ prox-
imity. This graph can be, as detailed below, the voxel connectivity
(6, 18 or 26) or a more sophisticated graph.

We chose the following regularization operator:

P : F ¼ LðX ;RÞ ! F

f ¼ w� # e
1
2bLw

� �� ð4Þ

where L denotes the graph Laplacian (Chung, 1992) and w⁄ the dual
vector2 of w. The parameter b controls the size of the regularization.
The optimization problem then becomes:

ðwopt; boptÞ ¼ arg min
w2X ;b2R

� 1
N

XN

s¼1
‘hingeðys½hw;xsi þ b�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Empirical Loss

þ kke1
2bLwk2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Spatial Regularization

ð5Þ

Such a regularization exponentially penalizes the high-frequency
components and thus forces the classifier to consider as similar vox-
els highly connected according to the graph adjacency matrix.
According to the previous section, this new minimization problem
(5) is equivalent to an SVM optimization problem. The new kernel
Kb is given by:

Kbðxs1 ;xs2 Þ ¼ xT
s1

e�bLxs2 ð6Þ
2 The dual vector w� 2 LðX ;RÞ of a vector w 2 X denotes the continuous linear
function defined by: 8x 2 X ;w�ðxÞ ¼ hw;xi.
for any pair of subjects ðxs1 ;xs2 Þ. Note that Kbðxs1 ; xs2 Þ ¼
he�b

2Lxs1 ; e
�b

2Lxs2 i. This is a heat or diffusion kernel (Kondor and
Lafferty, 2002).

2.2.2. Examples of regularization graphs
One has now to define the graph depending on the type of spa-

tial proximity one wants to enforce. The simplest option is to use
the image connectivity (6, 18 or 26). In this case, the regularized
SVM would be equivalent to smoothing the data with a Gaussian
kernel with standard deviation r ¼

ffiffiffi
b
p

(Smola and Kondor,
2003). But this would result in mixing gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF). Instead, we propose a
graph which takes into account both spatial location and tissue
types (Fig. 2). Let T be a set of tissues (e.g. T ¼ fGM;WM;CSFg).
In each voxel v, we have the probability pðtÞv that this voxel belongs
to tissue t. This probability is defined from a template (e.g. SPM

template). In the following, pvrefers to the tuple pv ¼ pðtÞv

� �
t2T

.

We considered the following graph. Two voxels are connected if
and only if they are neighbors in the image (6-connectivity). The
weight au,v of the edge between two connected voxels u and v
was defined as:

au;v ¼ exp
�v2ðpu; pvÞ

2

2r2
tissue

 !
ð7Þ

where v2 is the v2-distance and rtissue a parameter. It is used to
provide a measure of similarity between two tuples (pu and pv).
Specifically, the v2-distance is defined as:

v2ðpu;pvÞ
2 ¼ 1

2

X
t2T

pðtÞu � pðtÞv

� �2

pðtÞu þ pðtÞv
ð8Þ

The parameter rtissue was set beforehand to the estimated standard
deviation of v2(pu,pv). The graph edge weights were finally normal-
ized by the mean edge weight.

2.2.3. Computation of the Gram matrix
Taylor series expansion. To solve the spatially regularized SVM

optimization problem (Eq. (5)), one has to compute the Gram
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matrix G, which is defined by: G ¼ ðKðxs1 ;xs2 ÞÞs1 ;s2
. According to Eq.

(6), it requires to compute e�
b
2Lxs for any subject s 2 [1,N]. There are

various methods to compute the exponential of a matrix (Moler
and Loan, 2003). As L 2 Rd�d with d � 106, the direct computation
of e�

b
2L is intractable. Therefore, we used the Taylor series expan-

sion. Considering the terms up to pth order yields the following
approximation:

e
�b
2 Lxs 	

Xp

k¼0

1
k!

�b
2

L
� �k

xs ð9Þ

Scaling. It should be noted that b
2 L
� 	k

could have very large compo-
nents, which may lead to numerical problems and in particular to
round-off errors (Moler and Loan, 2003). To avoid such errors, we
used the scaling method. It consists in first computing e

�b
2nL where

n is an integer chosen such as:

�b
2n

L











1
6 1 ð10Þ

The first step scales the matrix norm between 0 and 1 by dividing
the matrix by n. We chose n as the smallest integer satisfying
inequality (10). Then e�

b
2L is computed from e�

b
2nL using the following

formula:

e�
b
2L ¼ e

�b
2nL

� �n
ð11Þ

Order of the Taylor series. We are working with symmetric matrices;
therefore, the spectral norm is lower or equal to the 1-norm. There-
fore, the approximation error of e

�b
2nL for the spectral norm is

bounded by 1
ðpþ1Þ! (e.g. Kondor and Lafferty, 2002). As L is semidefi-

nite positive, e
�b
2 L




 



2
6 1. This yields:

Xp

k¼0

1
k!

�b
2n

L
� �k

 !n

� e
�b
2 L














2

6 1þ 1
ðpþ 1Þ!

� �n

� 1 ð12Þ

We p = 10 for the experiments (Section 4). It yielded approximation
errors lower than 10�5.
3. Statistical analysis of the hyperplane coefficients

In this section, we propose a statistical analysis for the detection
of brain regions which are significantly different between two
groups of subjects, based on the results of the spatially regularized
SVM. It is based on significance tests on the SVM outputs.

The classification function, obtained with a linear SVM, is the
sign of the inner product of the features with wopt (Vapnik, 1995;
Shawe-Taylor and Cristianini, 2000, 2004; Schölkopf and Smola,
2001): sign (hwoptjxi + b). Therefore, if the absolute value of the
ith component of vector wopt; wopt

i

�� ��, is small compared to the other

components wopt
j

��� ���� �
j–i

, then the ith feature will have little influ-

ence on the classification. Conversely, if wopt
i

�� �� is relatively large,
the ith feature will play an important role in the classifier (Fig. 3).

The coefficients of two different OMH obtained with two differ-
ent SVM comparisons cannot be compared directly. Let S1;S01;S2

and S02 be four groups of subjects. Let w(1)opt be the hyperplane
coefficients obtained with an SVM analysis of groups S1 and S01.
Similarly, we defined w(2)opt as the OMH coefficients obtained with
an SVM analysis of groups S2 and S02. Note that, if the separation
between groups S1 and S01 is larger than the separation between
groups S2 and S02, then:

kwð1Þoptk 6 kwð2Þoptk

To sum up, there are two opposite effects:
(i) For a given comparison, the ith feature will have more
importance than feature j if and only if: wopt

i > wopt
j .

(ii) If the separation between groups S1 and S01 is larger than the
separation between groups S2 and S02, then:
kwð1Þ optk 6 kwð2Þoptk

Therefore, one cannot compare directly the weights jwopt
i j.

SVM search for the hyperplane for which the margin between
groups is maximal (Fig. 1). The margin m is large when there is a
large separation between two groups (Fig. 3). Note that, for the
standard linear SVM (1), the margin, m, can be written as Schölkopf
and Smola (2001):

m ¼ 2
kwoptk ð13Þ

and for the spatially regularized SVM (5):

m ¼ 2

e
1
2bLwopt




 


 ð14Þ

Thus, by combining m and
jwopt

i
j

kw optk, one can simultaneously quantify
the separation between groups and the relative influence of the dif-
ferent features. Therefore, we propose to analyze the statistic of:

mjwopt
i j

kwoptk ð15Þ

We performed permutation tests on
mjwopt

i
j

kwoptk under the null hypothesis

H0 corresponding to ‘‘no relationship between the class labels and
the MR scan’’. By randomly permuting the subjects labels 20,000
times and training the SVM with this permutation of labels, we esti-

mated for each voxel i the probability distribution of
mjwopt

i
j

kw optk under

H0. Based on these distributions, it is possible to testH0 at the voxel
level. The false discovery rate (FDR) was used to correct for multiple
comparisons (Soric, 1989; Benjamini and Hochberg, 1995). To the
best of our knowledge, other statistical analyses of the OMH
(Mourão-Miranda et al., 2005; Wang et al., 2007; Sato et al., 2009)
did not take the margin into account.

4. Experiments and results

We first tested our method on 2D synthetic images. We then
applied it on real data for the detection of brain areas associated
with three-month stroke outcome based on diffusion weighted
MRI acquired at the acute stage.

4.1. Synthetic images

4.1.1. Materials
We first evaluated the ability of the method to detect artificial

differences between two groups of twenty 2D synthetic images
(Fig. 4) – 116 � 92 with 1.5 mm isotropic voxels – which were con-
structed as follows. We considered a slice of a WM template. The
WM template was constructed as follows. The images of 509 sub-
jects randomly selected from the ADNI database were segmented
into GM, WM and CSF using the SPM5 unified segmentation
(Ashburner and Friston, 2005) and spatially normalized using DAR-
TEL (Ashburner, 2007). The normalized WM maps were then aver-
aged. We used the slice corresponding to z = 15 mm in the MNI
space.

For each of the 40 images, the voxels of the WM were assigned a
random number between zero and one, the intensity of the other
voxels being set to zero. In each image of the second group, we
constructed hyperintense areas (Fig. 5.a). The hyperintensities
hgreen of the green region and hred of the red region were



(a) (b)

(c) (d)

Fig. 3. Illustration of the discriminative information of the OMH and the margin. Upper row (a and b): The OHM coefficients informs about the relative importance of the
features. Lower row (c and d): the margin m quantifies the difference between two groups.

Fig. 4. Synthetic example. Upper row: from left to right, the WM template and five randomly selected images from the first group with no hyperintensities (control). Lower
row: from left to right, the WM template with the hyperintense regions to detect (in red and green) and five randomly selected images from the second group with
hyperintensities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Synthetic example: (a) WM template and the hyperintense regions to detect (in red and green); (b) detection with a linear SVM on raw images; (c) detection with a
linear SVM on smoothed images; (d) detection with a spatially regularized SVM on raw images. All univariate analyses detected no difference. Detected voxels are in white.
Contours of the simulated hyperintensities are in red and green. All tests were corrected for multiple comparisons using the false discovery rate (q = 0.05). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Demographic characteristics of the study population. Values are indicated as mean ± standard-deviation [range]. mRS: modified Rankin
Scale. Differences between groups were assessed using Student’s t-test.

Outcome good mRS 0–2 poor mRS 3–5

Number 39 33
Age (years) 55.8 ± 15.0 [24–81] 64.9 ± 10.9 [38–80] p = 0.002
mRS (3 months) 1.2 ± 0.7 [0–2] 4.0 ± 0.8 [3–5] p < 0.0001
NIHSS (<6 h) 11.4 ± 5.4 [2–23] 18.5 ± 4.9 [6–30] p < 0.0001
NIHSS (day one) 5.5 ± 4.1 [0–14] 16.8 ± 6.0 [6–35] p < 0.0001
Time to initial MRI (min) 152 ± 66 [66–360] 164 ± 63 [66–341] p = 0.2

734 R. Cuingnet et al. / Medical Image Analysis 15 (2011) 729–737
constructed so that they follow ðhgreen þ hredÞ � N ð2;0:2Þ. Gaussian
white noise ðN ð0;1ÞÞ was added to all images.

4.1.2. Analyses
We tested six methods: three univariate methods and three

SVM methods. We performed three univariate analyses on the vox-
el intensities: on the raw images, on the images smoothed with a
Gaussian kernel and on the images pre-processed by e�

b
2L (where

L was the Laplacian of the graph used in the spatially regularized
SVM).

We tested three SVM methods: the standard linear SVM on the
raw images, the standard linear SVM on the smoothed images and
the spatially regularized SVM on the raw images.

All tests were corrected for multiple comparisons with a 5%
FDR. The C parameter of the SVM was fixed to one k ¼ 1

2NC

(Schölkopf and Smola, 2001). The full width at half maximum
(FWHM) of the Gaussian smoothing kernel was set to three voxels
(the red and green regions’ widths).

b controls the scale of the spatial regularization. As mentioned
in paragraph Subsection 2.2.2, using the image connectivity graph
as a regularization graph would be equivalent to smoothing the
data with a Gaussian kernel with standard deviation r ¼

ffiffiffi
b
p

.
Therefore, for being able to compare the results obtained with

the spatial regularization and with the Gaussian smoothing, we
chose b as the square of the standard deviation of the Gaussian
smoothing kernel (b = r2).

4.1.3. Results
The group differences detected on the 2D synthetic images are

shown on Fig. 5. The three univariate analyses detected no differ-
ence. The SVM on raw images detected only very few voxels. On
smoothed images, it detected both regions, but detected also many
scattered clusters outside the hyperintense regions. The spatially
regularized SVM also detected both hyperintense regions and sub-
stantially decreased the number of scattered clusters.

4.2. Brain areas associated with stroke outcome

We applied our method to the detection of brain areas associ-
ated with three-month stroke outcome based on diffusion
weighted MRI acquired at the acute stage.

4.2.1. Subjects
Consecutive patients meeting the following criteria were

included to participate in the study: (1) ischemic stroke in carotid
territory, (2) initial 1.5T MRI with DWI performed within the first
six hours following stroke onset, (3) control MRI with DWI per-
formed within the next 3 days, and (4) clinical assessment by the
modified Rankin scale (mRS) at three months. Exclusion criteria
were symptomatic haemorrhagic transformation or death during
follow-up (90 days). As a result, 72 consecutive acute stroke pa-
tients (mean age: 60 ± 14 years [24–81]) were included in this
study. The patients could receive intravenous rtPA (recombinant
tissue plasminogen activator) within a 5-h time window according
to the routine clinical procedure at our institution. In this proce-
dure, intravenous rtPA is given based on clinical and MRI criteria
including baseline National Institutes of Health Stroke Scale
(NIHSS) > 4 without major improvement, acute cerebral ischemia
detected from MRI data, an exclusion of hemorrhage, and evidence
of an intracranial occlusion. The neurological examination was as-
sessed using NIHSS at admission and at day one. The modified Ran-
kin Scale (mRS) was used to assess outcome at 90 days. Good
outcome was defined as independency (mRS 0, 1 or 2; 39 subjects)
and poor outcome as severe disability (mRS 3–5; 33 subjects). The
demographic characteristics of the study population are reported
in Table 1.

All imaging and clinical data were obtained during routine clin-
ical workup of the patients in our stroke center. Therefore, accord-
ing to the French legislation, explicit informed consent was waived.
The study was approved by the La Pitié-Salpêtrière Hospital Ethics
Committee.

4.2.2. MRI acquisition and preprocessing
MR imaging was performed using a 1.5 Tesla MR unit (General

Electric Signa Horizon Echospeed) with enhanced gradient hard-
ware for echoplanar imaging. The analysis was performed on the
control MRI. The median delay between stroke onset and MRI
acquisition was 1.2 day (lower and upper quartiles: 1.1–1.8). We
performed three sequences in our MRI protocol: DWI, Fluid Atten-
uated Inversion Recovery (FLAIR), and an intra-cranial time-
of-flight MRA. The parameters of the axial DWI spin echo EPI were:
24 slices, 2825 ms repetition time (TR), 98.9 ms echo time (TE), 90�
flip angle, field-of-view (FOV) of 280 � 210 mm2, 96 � 64 matrix,
5 mm slice thickness, and 0.5 mm interslice gap. A baseline T2 im-
age and three diffusion-weighted images in the x, y, and z direc-
tions using a b-value of 1000 s mm�2 were acquired within 40 s.

The quantitative ADC maps were generated using commercially
available software (Functool 2, General Electric, Buc, France). The
ADC maps were normalized to the Montreal Neurological Institute
(MNI) reference frame using the T2-weighted template from SPM5
(Statistical Parametric Mapping, Wellcome Trust Centre for Neuro-
imaging, Institute of Neurology, London, UK). The spatially normal-
ized images had 2 mm isotropic voxels. The T2-weighted template
was made symmetric by averaging the template with its mirrored
image. To put all the lesions on the same side, ADC maps with the
infarct lesion in the left hemisphere were flipped with respect to
the interhemispheric plane for the analyses.

4.2.3. Analyses
Group analyses between patients with good outcome and

patients with poor outcome were performed on ADC maps ac-
quired one day after the stroke onset. Group differences were as-
sessed using the spatially regularized SVM with a tissue
dependent regularization on raw images. For comparison, we also
performed univariate analyses with both a permutation test and a
parametric Student’s T-test on smoothed images (8-mm FWHM
Gaussian filter). To construct the graph, we used the gray matter,
white matter and CSF templates provided with SPM5. As in the



Fig. 6. Statistically significant differences of the ADC maps obtained one day after the stroke onset between poor and good motor outcome with a spatially regularized SVM
superimposed on the SPM T1 single subject template (z = 20 mm, x = 28 mm and y = �8 mm in the MNI-space). Tests were corrected for multiple comparisons using the false
discovery rate (q = 0.05).

Fig. 7. In red: regions detected superimposed on white matter tracts of a single
control subject computed from diffusion spectral imaging (DSI) data using Diffusion
Toolkit (http://www.trackvis.org/dtk/). The colors of the fiber track code for the
orientation.
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previous section, the b parameter was chosen to correspond to the
FWHM of the univariate analyses. All tests were corrected for mul-
tiple comparisons using the false discovery rate (q = 0.05).

4.2.4. Results
The group analyses between stroke patients with good and poor

outcome based on ADC maps acquired at the acute stage (one day
after the stroke onset) led to the following results. No difference
was detected by the univariate analyses. The spatially regularized
SVM detected significant ADC changes between patients with good
and poor outcome (Fig. 6).

The changes detected one day after the onset involved a large
cluster (1265 voxels) that included the periventricular white mat-
ter, the posterior part of the internal capsule, the posterior part of
the putamen and the lower part of the primary motor cortex
(Figs. 6 and 7). Changes were also detected in some small clusters
located in the insula (37 voxels), the uncinate fasciculus (21 vox-
els) and the contralateral medulla (25 voxels).

While the individual classification of patients was not the objec-
tive of this paper, we compared the classification accuracy of the
spatially regularized SVM to that of a standard linear SVM. The spa-
tially regularized SVM was as accurate as the linear SVM (76%
accuracy).
5. Discussion

In this paper, we proposed a new method based on spatially
regularized SVM to detect group differences in brain images.
Spatial consistency was directly included in the SVM by using
the graph Laplacian. The proposed approach was applied to the
detection of early ADC changes associated with three-month stroke
outcome. The ADC changes were localized in the corticospinal
tract, the periventricular white matter and in the lower motor cor-
tex that were undetected by univariate group analyses.

Group analyses of brain images have widely relied on the clas-
sical mass-univariate approach. However, sensitivity of univariate
approaches is limited when the differences are spatially complex
and involve a combination of different voxels or brain structures
(Davatzikos, 2004). In our study, in both the synthetic tests and
the application to stroke patients, the spatially regularized SVM al-
lowed unveilling differences that were undetected by univariate
analyses. More specifically, in the synthetic example, the lesions
or hyperintensities constructed in the image of the second group
were distributed between two different regions, the red and the
green ones. As a result, the differences between the first (without
any hyperintensity) and the second group (with hyperintensity)
were too subtle in each voxel, for the differences to be detected
by a univariate analysis, considering the sample size. Only the
combination of both regions was discriminative. Such group differ-
ences were only detected using SVM-based group analyses.

In such approaches, the hyperplane coefficients are analyzed to
detect significant group differences between populations. How-
ever, like other voxel-based comparisons, SVM-based analyses
are subject to noise, registration errors and interindividual vari-
ability. This is due to the fact that the regularization term of the
standard linear SVM is not a spatial regularization term. Thus,
the map wopt obtained with a standard linear SVM can be noisy
and scattered. In the synthetic example white noise was added
to images. As a consequence, only very few voxel were detected
by the standard linear SVM. Gaussian smoothing is therefore often
used as a preprocessing step. In the synthetic exemple, since the
noise was unstructured, the smoothing step partially removed it,
which lead to a better detection with a linear SVM. However such
preprocessing step does not fully take into account anatomical
information about the data. For instance, it mixes white matter
with gray matter voxels. In this contribution, we proposed instead
to add to the SVM a spatial regularization which accounts for tissue
types.

The regularization was based on the graph Laplacian. The graph
framework has often been used in image processing (Geman and
Geman, 1984; Shi and Malik, 2000) to encode spatial priors. More
generally, weighted graphs allow modeling the voxels’ proximity.
In this paper, this prior information was introduced into the SVM
using a spatial regularization. This regularization exponentially
penalized the high frequency components of the OMH with respect
to the graph. In other words, it constrained the classifier to

http://www.trackvis.org/dtk/
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consider as similar voxels highly connected according to the graph
adjacency matrix. Such regularization leads to a diffusion kernel on
a graph. Graph diffusion kernels for SVM were introduced by Kon-
dor and Lafferty (2002). They belong to the family of spectral reg-
ularization kernels (Smola and Kondor, 2003). Spectral
regularization kernels have been used in satellite imaging
(Gómez-Chova et al., 2008) and bioinformatics (Vert and Kanehisa,
2003; Lanckriet et al., 2004; Tsuda and Noble, 2004). However, our
approach differs from these diffusion kernels: in our case, the
nodes of the graph are the features, here the voxels, whereas in
these other papers, the nodes were the objects to classify. To our
knowledge, kernels similar to those used in this study have not
been used in neuroimaging but only for the classification of micro-
array data (Rapaport et al., 2007.)

The penalization used in this study was exponential, which led
to the diffusion kernel. Many other penalization functions, such as
the regularized Laplacian, the p-Step Random Walk or the Inverse
Cosine (Smola and Kondor, 2003) for instance, could have been
used instead of the diffusion process. Nevertheless using the diffu-
sion process as a penalization function extends the widely used
framework which consists in smoothing the data with a Gaussian
kernel as a preprocessing step.

The proposed approach was applied to the detection of brain
areas associated with stroke outcome based on DWI acquired at
the acute stages. It allowed detecting ADC changes that were
localized in the corticospinal tract (CST), the periventricular
white matter, the posterior part of the putamen and part of
the primary motor cortex. Univariate analyses failed to detect
any difference.

The implication of the CST, obtained at the acute stage using
ADC measures, was in line with previous DTI studies carried out
at the subacute (Konishi et al., 2005; Thomalla et al., 2005; Cho
et al., 2007; Kunimatsu et al., 2007; Nelles et al., 2007; Jang
et al., 2008; Domi et al., 2009; Yu et al., 2009) or chronic phase
(Feydy et al., 2002; Wenzelburger et al., 2005; Newton et al.,
2006; Stinear et al., 2007; Schaechter et al., 2008). Previous func-
tional imaging (fMRI) studies have demonstrated that recovery is
mainly related to the reorganization of the preserved cortical mo-
tor network of peri-infarcted, motor-related areas (Jaillard et al.,
2005) and homologous areas in the intact contralateral hemisphere
(Rijntjes, 2006). In this study, significant ADC changes were found
mainly in sub-cortical regions in addition to a smaller part of the
primary motor cortex. Damages in subcortical regions, especially
in the CST and the periventricular white matter, could be more di-
rectly related to stroke outcome than cortical regions for ischemic
stroke in carotid territory (Rosso et al., 2011; DeVetten et al., 2010).
Indeed, we may hypothesize that, when the main motor outflow
tract is interrupted, motor commands cannot be conveyed to the
spinal cord and therefore reorganization at the cortical level re-
mains insufficient to the patient recovery. This hypothesis is sup-
ported by Seitz et al. (2009), where periventricular white matter
damages were associated with a poor patient outcome. The
authors have underlined that periventricular white matter is the
junction where many white matter tracts are crossed over. Addi-
tionally, a number of previous studies using either standard MRI
or CT-scans (Feydy et al., 2002; Wenzelburger et al., 2005) or mea-
sures of other diffusion variables (Konishi et al., 2005; Thomalla
et al., 2005; Nelles et al., 2007; Jang et al., 2008; Domi et al.,
2009) at the subacute or chronic stages have shown that CST le-
sions correlate to motor outcome. We have extended these results
at the very acute stage using ADC changes at day one and using a
global measure of outcome. These results could provide useful
information to guide therapies and rehabilitation programs at an
early stage. They could also allow giving more precise information
to relatives. Finally, they could be used in stratification or design of
future clinical trials.
This study has the following limitations. In addition to that
large cluster involving the CST, smaller clusters were also detected
in the regions of the insula, the uncinate fasciculus and the contra-
lateral medulla. These smaller clusters may result from an artifact
of the method, in particular given that the false discovery rate was
used to correct for multiple comparisons. Moreover, it should be
noted that the location of these clusters can only be approximately
described because DWI data acquired at the acute stage is prone to
misregistrations and has a large voxel size (5 mm). External valida-
tions on other groups of patients are needed to assess whether
these smaller clusters are artefactual or not. Besides, the method
in its present form does not include covariates in the analysis.
For this reason, age and sex were not included as covariates. Nev-
ertheless, detected differences were strongly lateralized on the side
of the lesion. This suggests pathology-related changes rather than
age-related changes. Future work will focus on the inclusion of
covariates in the spatially regularized SVM.

In conclusion, we proposed a method based on spatially regu-
larized SVM to study differences between populations. When ap-
plied to the analysis of brain areas associated with stroke
outcome, it detected early ADC changes mainly localized in the
corticospinal tract and the periventricular white matter that could
not be detected using standard univariate analyses. The proposed
approach is not specific to diffusion MRI or stroke patients, and
can be applied to other types of data (e.g. anatomical MRI) and
other pathologies (e.g. neurodegenerative disorders). It has the po-
tential to overcome the limits of traditional mass univariate voxel-
wise analyses by detecting complex spatial patterns of alterations.

Acknowledgments

This work was partially supported by the ‘‘Programme Hospita-
lier de Recherche Clinique EVAL-USINV’’ (No. AOM 03 008).

This work was partially supported by ANR (Project HM-TC, No.
ANR-09-EMER-006).

References

Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. NeuroImage
38, 95–113.

Ashburner, J., Friston, K.J., 2000. Voxel-based morphometry – the methods.
NeuroImage 11, 805–821.

Ashburner, J., Friston, K.J., 2005. Unified segmentation. NeuroImage 26, 839–851.
Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal Statistical
Society. Series B (Methodological) 57, 289–300.

Chalela, J.A., Kidwell, C.S., Nentwich, L.M., Luby, M., Butman, J.A., Demchuk, A.M.,
Hill, M.D., Patronas, N., Latour, L., Warach, S., 2007. Magnetic resonance imaging
and computed tomography in emergency assessment of patients with
suspected acute stroke: a prospective comparison. The Lancet 369, 293–298.

Cho, S.H., Kim, D.G., Kim, D.S., Kim, Y.H., Lee, C.H., Jang, S.H., 2007. Motor outcome
according to the integrity of the corticospinal tract determined by diffusion
tensor tractography in the early stage of corona radiata infarct. Neuroscience
Letters 426, 123–127.

Chung, F.R.K., 1992. Spectral Graph Theory 1992, AMS.
Crafton, K.R., Mark, A.N., Cramer, S.C., 2003. Improved understanding of cortical

injury by incorporating measures of functional anatomy. Brain 126, 1650–1659.
Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M.,

Benali, H., Colliot, O., 2011. The Alzheimer’s disease neuroimaging initiative,
Automatic classification of patients with Alzheimer’s disease from structural MRI:
a comparison of ten methods using the ADNI database. NeuroImage 56, 766–781.

Cuingnet, R., Rosso, C., Lehéricy, S., Dormont, D., Benali, H., Samson, Y., Colliot, O.,
2010. Spatially regularized SVM for the detection of brain areas associated with
stroke outcome. In: Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2010. Lecture Notes in Computer Science, vol. 6361.
Springer, Berlin/Heidelberg, pp. 316–323.

Davatzikos, C., 2004. Why voxel-based morphometric analysis should be used with
great caution when characterizing group differences. NeuroImage 23, 17–20.

Decoste, D., Schölkopf, B., 2002. Training invariant support vector machines.
Machine Learning 46, 161–190.

DeVetten, G., Coutts, S.B., Hill, M.D., Goyal, M., Eesa, M., O’Brien, B., Demchuk, A.M.,
Kirton, A.for the MONITOR and VISION study groups, 2010. Acute corticospinal
tract Wallerian degeneration is associated with stroke outcome. Stroke 41, 751–
756.



R. Cuingnet et al. / Medical Image Analysis 15 (2011) 729–737 737
Domi, T., deVeber, G., Shroff, M., Kouzmitcheva, E., MacGregor, D.L., Kirton, A., 2009.
Corticospinal tract pre-Wallerian degeneration: a novel outcome predictor for
pediatric stroke on acute MRI. Stroke 40, 780–787.

Fan, Y., Shen, D., Gur, R., Gur, R., Davatzikos, C., 2007. COMPARE: classification of
morphological patterns using adaptive regional elements. IEEE Transactions on
Medical Imaging 26, 93–105.

Feydy, A., Carlier, R., Roby-Brami, A., Bussel, B., Cazalis, F., Pierot, L., Burnod, Y.,
Maier, M., 2002. Longitudinal study of motor recovery after stroke: recruitment
and focusing of brain activation. Stroke 33, 1610–1617.

Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence 6, 721–741.

Gómez-Chova, L., Camps-Valls, G., Muñoz-Marı́, J., Calpe, J., 2008. Semi-supervised
image classification with Laplacian support vector machines. IEEE Geoscience
and Remote Sensing Letters 5, 336–340.

Haris, K., Efstratiadis, S., Maglaveras, N., Katsaggelos, A., 1998. Hybrid image
segmentation using watersheds and fast region merging. IEEE Transactions on
Image Processing 7, 1684–1699.

Jaillard, A., Martin, C.D., Garambois, K., Lebas, J.F., Hommel, M., 2005. Vicarious
function within the human primary motor cortex?: a longitudinal fMRI stroke
study. Brain 128, 1122–1138.

Jang, S.H., Bai, D., Son, S.M., Lee, J., Kim, D.S., Sakong, J., Kim, D.G., Yang, D.S., 2008.
Motor outcome prediction using diffusion tensor tractography in pontine
infarct. Annals of Neurology 64, 460–465.

Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox,
N.C., Jack, C.R., Ashburner, J., Frackowiak, R.S.J., 2008a. Automatic classification
of MR scans in Alzheimer’s disease. Brain 131, 681–689.

Kondor, R.I., Lafferty, J.D., 2002. Diffusion kernels on graphs and other discrete input
spaces. In: Proceedings of the International Conference on Machine Learning,
pp. 315–322.

Konishi, J., Yamada, K., Kizu, O., Ito, H., Sugimura, K., Yoshikawa, K., Nakagawa, M.,
Nishimura, T., 2005. MR tractography for the evaluation of functional recovery
from lenticulostriate infarcts. Neurology 64, 108–113.

Kunimatsu, A., Itoh, D., Nakata, Y., Kunimatsu, N., Aoki, S., Masutani, Y., Abe, O.,
Yoshida, M., Minami, M., Ohtomo, K., 2007. Utilization of diffusion tensor
tractography in combination with spatial normalization to assess involvement
of the corticospinal tract in capsular/pericapsular stroke: feasibility and clinical
implications. Journal of Magnetic Resonance Imaging 26, 1399–1404.

Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., Noble, W., 2004. Kernel-based data
fusion and its application to protein function prediction in yeast. In:
Proceedings of the Pacific Symposium on Biocomputing, pp. 300–311.

Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S.M., Davatzikos, C., 2004.
Morphological classification of brains via high-dimensional shape
transformations and machine learning methods. NeuroImage 21, 46–57.

Lo, R., Gitelman, D., Levy, R., Hulvershorn, J., Parrish, T., 2010. Identification of
critical areas for motor function recovery in chronic stroke subjects using voxel-
based lesion symptom mapping. NeuroImage 49, 9–18.

Moler, C., Loan, C.V., 2003. Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Review 45, 3–49.

Mourão-Miranda, J., Bokde, A.L., Born, C., Hampel, H., Stetter, M., 2005. Classifying
brain states and determining the discriminating activation patterns: Support
vector machine on functional MRI data. NeuroImage 28, 980–995, Special
Section: Social Cognitive Neuroscience.

Nelles, M., Gieseke, J., Flacke, S., Lachenmayer, L., Schild, H., Urbach, H., 2007.
Diffusion tensor pyramidal tractography in patients with anterior choroidal
artery infarcts. AJNR: American Journal of Neuroradiology 29, 488–493.

Newton, J.M., Ward, N.S., Parker, G.J.M., Deichmann, R., Alexander, D.C., Friston, K.J.,
Frackowiak, R.S.J., 2006. Non-invasive mapping of corticofugal fibres from
multiple motor areas–relevance to stroke recovery. Brain 129, 1844–1858.

Peleg, S., 1980. A new probabilistic relaxation scheme. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2, 362–369.

Querbes, O., Aubry, F., Pariente, J., Lotterie, J.A., Demonet, J.F., Duret, V., Puel, M.,
Berry, I., Fort, J.C., Celsis, P.the Alzheimer’s Disease Neuroimaging Initiative,
2009. Early diagnosis of Alzheimer’s disease using cortical thickness: impact of
cognitive reserve. Brain 132, 2036–2047.

Rapaport, F., Zinovyev, A., Dutreix, M., Barillot, E., Vert, J., 2007. Classification of
microarray data using gene networks. BMC Bioinformatics 8, 35.
Rijntjes, M., 2006. Mechanisms of recovery in stroke patients with hemiparesis or
aphasia: new insights, old questions and the meaning of therapies. Current
Opinion in Neurology 19, 76.

Rosso, C., Colliot, O., Pires, C., Delmaire, C., Valabrègue, R., Crozier, S., Dormont, D.,
Baillet, S., Samson, Y., Lehéricy, S., 2011. Early ADC changes in motor structures
predict outcome of acute stroke better than lesion volume. Journal of
Neuroradiology 38, 105–112.

Rosso, C., Hevia-Montiel, N., Deltour, S., Bardinet, E., Dormont, D., Crozier, S., Baillet,
S., Samson, Y., 2009. Prediction of infarct growth based on apparent diffusion
coefficients: penumbral assessment without intravenous contrast material.
Radiology 250, 184–192.

Sato, J.R., Fujita, A., Thomaz, C.E., da Graca Morais Martin, M., Mourão-Miranda, J.,
Brammer, M.J., Junior, E.A., 2009. Evaluating SVM and MLDA in the extraction of
discriminant regions for mental state prediction. NeuroImage 46, 105–114.

Schaechter, J.D., Perdue, K.L., Wang, R., 2008. Structural damage to the corticospinal
tract correlates with bilateral sensorimotor cortex reorganization in stroke
patients. NeuroImage 39, 1370–1382.

Schölkopf, B., Burges, C., Vapnik, V., 1996. Incorporating invariances in support
vector learning machines. In: Proceedings of the 1996 International Conference
on Artificial Neural Networks. Springer Verlag, p. 47.

Schölkopf, B., Simard, P., Smola, A., Vapnik, V., 1998. Prior knowledge in support
vector kernels. In: Proceedings of Conference on Advances in Neural
Information Processing Systems’97. MIT Press, pp. 640–646.

Schölkopf, B., Smola, A.J., 2001. Learning with Kernels. MIT Press.
Seitz, R., Sondermann, V., Wittsack, H., Siebler, M., 2009. Lesion patterns in

successful and failed thrombolysis in middle cerebral artery stroke.
Neuroradiology 51, 865–871.

Shawe-Taylor, J., Cristianini, N., 2000. Support Vector Machines and other Kernel-
based Learning Methods. Cambridge University Press.

Shawe-Taylor, J., Cristianini, N., 2004. Kernel Methods for Pattern Analysis.
Cambridge University Press.

Shen, D., Davatzikos, C., 2002. HAMMER: hierarchical attribute matching
mechanism for elastic registration. IEEE Transaction on Medical Imaging 21,
1421–1439.

Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22, 888–905.

Smola, A., Kondor, R., 2003. Kernels and regularization on graphs. In: Proceedings of
the 16th Annual Conference on Learning Theory and 7th Kernel Workshop,
COLT/Kernel. Springer Verlag, p. 144.

Smola, A.J., Schölkopf, B., 1998. On a kernel-based method for pattern recognition,
regression, approximation, and operator inversion. Algorithmica 22, 211–231.

Soric, B., 1989. Statistical ‘‘discoveries’’ and effect-size estimation. Journal of the
American Statistical Association 84, 608–610.

Stinear, C.M., Barber, P.A., Smale, P.R., Coxon, J.P., Fleming, M.K., Byblow, W.D., 2007.
Functional potential in chronic stroke patients depends on corticospinal tract
integrity. Brain 130, 170–180.

Thomalla, G., Glauche, V., Weiller, C., Röther, J., 2005. Time course of Wallerian
degeneration after ischaemic stroke revealed by diffusion tensor imaging.
Journal of Neurology, Neurosurgery & Psychiatry 76, 266–268.

Tsuda, K., Noble, W.S., 2004. Learning kernels from biological networks by
maximizing entropy. Bioinformatics 20, i326–333.

Vapnik, V.N., 1995. The Nature of Statistical Learning Theory. Springer-Verlag.
Vemuri, P., Gunter, J.L., Senjem, M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S.,

Boeve, B.F., Petersen, R.C., Jack, C.R., 2008. Alzheimer’s disease diagnosis in
individual subjects using structural MR images: validation studies. NeuroImage
39, 1186–1197.

Vert, J., Kanehisa, M., 2003. Graph-driven feature extraction from microarray data
using diffusion kernels and kernel CCA. Advances in Neural Information
Processing Systems, 1449–1456.

Wang, Z., Childress, A.R., Wang, J., Detre, J.A., 2007. Support vector machine
learning-based fMRI data group analysis. NeuroImage 36, 1139–1151.

Wenzelburger, R., Kopper, F., Frenzel, A., Stolze, H., Klebe, S., Brossmann, A., Kuhtz-
Buschbeck, J., Golge, M., Illert, M., Deuschl, G., 2005. Hand coordination
following capsular stroke. Brain 128, 64–74.

Yu, C., Zhu, C., Zhang, Y., Chen, H., Qin, W., Wang, M., Li, K., 2009. A longitudinal
diffusion tensor imaging study on Wallerian degeneration of corticospinal tract
after motor pathway stroke. NeuroImage 47, 451–458.


	Spatial regularization of SVM for the detection of diffusion alterations  associated with stroke outcome
	1 Introduction
	2 Spatially regularized SVM using the graph Laplacian
	2.1 Regularization and priors in SVM
	2.1.1 Linear SVM
	2.1.2 How to include priors in SVM
	2.1.3 Regularization operators

	2.2 Regularization based on diffusion on graph
	2.2.1 Choice of the regularization operator
	2.2.2 Examples of regularization graphs
	2.2.3 Computation of the Gram matrix


	3 Statistical analysis of the hyperplane coefficients
	4 Experiments and results
	4.1 Synthetic images
	4.1.1 Materials
	4.1.2 Analyses
	4.1.3 Results

	4.2 Brain areas associated with stroke outcome
	4.2.1 Subjects
	4.2.2 MRI acquisition and preprocessing
	4.2.3 Analyses
	4.2.4 Results


	5 Discussion
	Acknowledgments
	References


